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Figure 1: The user poses to select parts of a model for animation (a). Thereafter, the user motion is applied to the matched portion of mesh
(b). She is free to interleave editing operations (c), and our system automatically adapts recorded animations to the updated model (d).

Abstract

We introduce AniMesh, a system that supports interleaved
modeling and animation creation and editing. AniMesh is suitable
for rapid prototyping and easily accessible to non-experts. Source
animations can be obtained from commodity motion capture de-
vices or by adapting canned motion sequences. We propose skele-
ton abstraction and motion retargeting algorithms for finding corre-
spondences and transferring motion between skeletons, or portions
of skeletons, with varied topology. Motion can be copied-and-
pasted between kinematic chains with different skeletal topologies,
and entire model parts can be cut and reattached, while always re-
taining plausible, composite animations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation
Keywords: Motion transfer, motion editing, animation interfaces,
skeletal animation, shape editing, mesh modeling

1 Introduction
The character animation pipeline typically requires creation of de-
tailed 3D characters, high quality rigs—skeletal bones and skin
weights binding the surface to them—and lively motion sequences.
Each stage in this sequence is time-consuming and requires task-
specific proficiency, making the process inaccessible to novices.
Furthermore, this sequence is linear. A model cannot be edited
once it has been rigged and animated, impeding iterative design.
Motivated by this observation, we created AniMesh, a system that
unifies modeling and animation. Surfaces can be refined, sculpt-
ed or assembled; skeleton and skin weights can be re-designed and
re-painted; and animations can be quickly prototyped and verified.
Our design goal, unlike most existing animation suites, is to sup-
port tasks traditionally poorly served by modern tools (e.g. rapid

prototyping, accessibility to non-expert users, exploration), where a
non-linear and non-destructive workflow can offer advantages over
more traditional techniques.

Prior work has addressed similar issues by automating the modeling
process [Igarashi et al. 1999; Nealen et al. 2007], enabling the re-
use of rigs [Baran and Popović 2007; Miller et al. 2010], or inte-
grating modeling and rigging into one system [Borosán et al. 2012].
However, a simple operation such as removing part of a limb from
an animated character and re-attaching it elsewhere would still in-
validate the animation, requiring it be re-designed. If we view the
modified character as an entirely different shape, then this problem
can be reduced to motion retargeting [Gleicher 1998]. Retargeting,
however, is typically treated as a stand-alone process that relies on
similar topology between the source and target, or manually speci-
fied mappings. Furthermore, structural changes applied to the shape
force the retargeting process to be reapplied.

We incorporate motion retargeting into a unified process for de-
signing shapes and their animations. During animation design
and retargeting, our system provides users with guided, direct con-
trol (Figure 1a and b). For editing operations, instead of globally
re-establishing the correspondence after any edits, our retargeting
method locally maintains the originally mapped motions on every
single skeletal bone (Figure 1c and d). With these two supporting
components, we provide a non-destructive animation creation and
editing tool that allows users to change the shape, the underlying
skeleton, and the animation in any order, using the basic operations
of cutting and merging, as well as skeletal node addition and dele-
tion. Specifically, our contributions provide:

• a non-linear modeling/animation tool easily accessible to
novice users and suitable for rapid prototyping

• and a shape editing (cutting, merging, node addition and
removal) procedure that maintains consistent modeling and
animation transformations.

To facilitate the creation and editing of animations in AniMesh,
we have developed a partial skeleton matching algorithm based
on shape abstraction, as well as introduce a motion representation
and mapping algorithm that allows for multiple reuses of existing
source motions. For the purposes of this system we ignore aspects
in retargeting such as environmental interactions and only focus on
the transfer of motion from one skeleton to another. We refer to
an individual animation as a sequence of rotations over time due
to motion of the source skeleton. The source animation is record-



ed and stored, and can later be sampled for the purpose of re-
targeting onto target kinematic chains with different degrees of free-
dom (DOFs). On the target skeleton, for each bone we store refer-
ences to the source animation(s) as well as its own modeling trans-
formation. This representation is essential for integrating animation
retargeting into the modeling operations of posing, cutting and
merging (Section 6). Our system is built on the shape, skeleton,
and mesh/skin editing system RigMesh [Borosán et al. 2012], and
while we do not describe that system in detail, we use their local
mesh adjustment and reskinning algorithms in this paper.

We see AniMesh as a step towards non-linear, non-destructive 3D
modeling, editing, rigging, and animation. All components and
algorithms are designed to allow a single user to interleave these
tasks and significantly decrease iteration time, and, ideally, increase
their prototyping abilities. Due to this design goal, certain classes of
animations are outside the scope of this work. For example, adding
root translation introduces issues like footskate. Similarly, since
our system is based on skeletal animation, we do not address facial
animations and other advanced features using non-skeletal rigs.

2 Related Work
Any motion retargeting approach requires, at its core, a mapping
between the source and the target. Most of the existing work in
this field [Popović and Witkin 1999; Lee and Shin 1999; Shin et al.
2001; Sumner and Popović 2004; Kulpa et al. 2005] address the
issue of retargeting to human-like figures or require that the source
and the target figure have similar topologies. Gleicher [1998]
describes retargeting to a figure with different DOFs, under the
constraint that the characters have approximately the same size.
Dontcheva et al. [2003] propose to layer animations designed at
different passes, effectively retargeting the source animation from
known widgets onto characters with vastly different shapes. Hecker
et al. [2008] describe a system used in the game SPORE that retar-
gets pre-authored animations to player-generated characters whose
skeletal topologies are unknown when designing the animations.
They require animators to provide semantic information on motions
they design for a general reference character. Using a statistical
mapping function, Yamane et al. [2010] map human motion cap-
ture data to a non-humanoid character. Poirier and Paquette [2009]
use multi-resolution subgraphs and a shape descriptor for partial
matching and retargeting. Their retargeting method has quadratic
runtime complexity w.r.t. the number of embedding points, where-
as our method runs in real time. Miller et al. [2010] retarget skin-
ning information using a database of partial rigs – skeleton and skin
weights identifying the surface of the model with skeletal bones. In
comparison, our method does not require such examples and works
directly with the user input.

Many existing motion retargeting approaches [Gleicher 1998; Mon-
zani et al. 2000; Hecker et al. 2008] use inverse kinematics
(IK) [Watt and Watt 1991] to determine the rotation for each tar-
get bone, preserving end effector positions. In our setting, IK could
lead to unnatural or even impossible solutions, since bone lengths
differ between the user and model. It is more important to generate
plausible motion transfer. This has been addressed in the literature
by the work of Mine et al. [1997]. Informed by proprioception,
Boff et al. [1986] provide body-relative feedback for the user. This
inspired us to design a simple and predictable retargeting method.
Predictability is a key benefit for animators who must mentally in-
vert the mapping in order to achieve desired motions. Our mo-
tion representation and sampling method (Section 5.1) allows the
motions to be carried over during modeling, incorporating motion
retargeting in the shape and model editing process.

With advances in inexpensive motion sensors, more recent works
have approached motion retargeting using devices such as Kinec-
t [Microsoft 2015] and LeapMotion [2015]. Chen et al. [2012]

Figure 2: Manually specifying the mapping and the transfer. The
user selects upper body skeletal chains from the source shape (left),
specifies its corresponding chain on the target (right), and transfers
the motions. The matched skeletal chains are highlighted.
allow the user to pose the input skeleton and embed it within the
3D scanned static mesh using the Kinect. Extending the embed-
ded deformation framework [Sumner et al. 2007], they solve for
the optimal transformation on the deformation graph. Vögele et
al. [2012] map the Kinect skeleton of two humans to a quadrupedal
target skeleton using a part-based statistical shape model. Seol
et al. [2013] show a motion puppetry system that drives a non-
humanoid with fewer DOFs than those of the performed source
animation. Rhodin et al. [2014] allow for puppeteering using ar-
bitrary source motions. Their source and target are not necessarily
skeletal motions, and the user needs to define a small number of
pose correspondences between source and target motions. Using an
automatic method to embed the skeleton inside the shape, Jacobson
et al. [2014] introduce an iterative system for manipulating virtu-
al characters using their own skeletal animation input device. In
AniMesh, the user also has direct control over the matching process
by posing and selecting the desired skeletal matches. Our method
supports various input motion data, and works within the skeletal
deformation framework.

3 Workflow
An example workflow using AniMesh is as follows. The user be-
gins by loading a rigged mesh (the target) and uses a source of
live bone-skeleton motion data. Our system is data-source agnos-
tic, and supports motion data provided by Microsoft Kinect (the
humanoid shadow and skeleton of the arms in Figure 1a), LeapMo-
tion, or a pre-existing motion library. By orienting the target shape
on-screen and then posing in front of the capture device, a por-
tion of the model’s skeleton is selected for animation. Our match-
ing algorithm (Section 4) finds a set of matches between the user’s
source skeleton and the target skeleton; the top match is displayed
in real-time (Figure 1a). The user cycles through and selects one
of a number of viable candidate matches, assumes a comfortable
pose (the rest state), and initiates simultaneous motion capture and
animation transfer (Figure 1b and Section 5). After recording, the
user may play back or scrub through the recorded animations on a
timeline, or edit the model by cutting, copying, and merging; she
can also re-use existing models and parts (Figure 1c). Animations
can be layered by recording overlapping motion or by re-using
performances through the basic operations of copying/pasting (of
shapes as well as animations), cutting and merging. User may also
manually override the automatic correspondence of skeletal chains
between the source and the target shapes (Figure 2). All operations
are demonstrated in the accompanying video.

The key to our non-destructive shape modeling/animation work-
flow is the ability to maintain motions while editing the shape
(Section 6). This relies on our approach to help the user select a
skeleton correspondence (Section 4) and our approach to efficient-
ly represent and transfer motion (Section 5).



4 Skeleton matching by shape abstraction
To select a portion of the model for animation, as well as find a suit-
able skeletal chain for live motion retargeting and visual animation
feedback, we find and score candidate partial matches between the
source and target at various scales. Our matching process considers
both skeletons’ topology and geometry.

Topology Animators have the freedom to map their (full or partial)
source skeleton to any part of the target. In our system, the source
can be the user’s input motion data or some existing animation at-
tached to a skeleton, and the target shape can be highly varied in its
skeletal topology. Both source and target graphs are limited only in
that they are trees, i.e. connected and acyclic.

Geometry Animators pose and orient parts of their bodies in space
to select an intended match between the source and target; the
matching, therefore, should be dependent on spatial similarity, and
also be scale-invariant. Finding a good similarity metric not only af-
fects the quality of the mapping, but also influences the predictabil-
ity of its presentation to the animator.

In general, skeleton matching is a subset of the well-studied top-
ics of shape correspondence and graph matching. For a survey of
modern methods see [Van Kaick et al. 2011]. In our system, the
user specifies the semantics of a mapping by changing the pose
in front of the capture device. Thus, we must take into accoun-
t both mathematical and perceptual aspects of the problem. Our
matching algorithm uses concepts from co-abstraction [Yumer and
Kara 2012] to simplify the trees, and concepts from combinatori-
al tree search to select them. We apply an abstraction process to
the source and the target skeletons independent of each other. This
results in a level-of-detail (LOD) hierarchy for the target skeleton,
and a single-step simplification of the source (Section 4.1). After-
wards we collect all candidate sub-trees in the target LOD hierarchy
and compare them with the simplified source to rank them for suit-
ability as a source-target mapping (Section 4.2). This process is
illustrated in Figure 3.

4.1 Topology: hierarchical skeleton abstraction

In general, a one-to-one mapping between a puppeteer and a model
may not exist. Instead of always mapping the entire source skeleton
from the capture device to all parts of the target shape simultaneous-
ly, the animator is better served by being able to animate subsets of
the target in different passes. In AniMesh, we use a LOD represen-
tation to allow the animator to choose whether to control the entire
model broadly, or to select and animate small details individually.

In our abstraction process, we categorize skeletal nodes as either
leaf nodes (only one neighbor), chain nodes (two neighbors), or

branch nodes (more than two neighbors). For a target skeleton with
known root node, collecting candidate matches could proceed by
traversing the tree and selecting every sub-tree from the root down
to each leaf. Instead, as a root node is not always given–and we
prefer that novice users need not worry about this technical detail–
we reverse this process and, starting from the leaf nodes, create the
LOD hierarchy, simplify the sub-trees for subsequent matching, and
find a suitable root node, all in tandem.

To illustrate our hierarchical matching algorithm, we use the target
skeleton in Figure 3c. Step 1. Each iteration begins by identifying
leaf nodes, shown as red circles. According to our topology criteri-
a, the chain nodes (blue circles) between a leaf and a branch node
(orange circle) form a trivial path, and are thus removed. Their
geometric positions, however, should still contribute to the shape
of the skeletal chain for computing the similarity (Section 4.2).
Step 2. We update the leaf positions to be the average of deleted
chain nodes, weighted by their outgoing bone lengths (Figure 3d).
In addition, the lengths of the removed chains are accumulated and
stored at the leaf nodes, to be used for further abstractions (Step 4).
Step 3. Sub-trees are generated by identifying their roots at branch
nodes with only one non-leaf neighbor (green circles). In Figure 3d,
the candidate sub-trees identified in the first iteration (blocks 1-1
and 1-2) are collected for matching. It is important to note our cri-
teria for identifying sub-trees: in Figure 3d, branch nodes p and q
each have two non-leaf neighbors. They will be identified as sub-
tree roots at a later iteration (Figure 3e). Step 4. As a last step in
the iteration, each sub-tree is abstracted into a leaf node for subse-
quent iterations (e.g. blocks 1-1 and 1-2 are turned into leaves in
Figure 3e). Its geometric position is determined as the average of
its nodes’ positions, weighted by their accumulated chain lengths.

This iterative process terminates once we have found the root node
of the hierarchy. If a single node remains, it is declared to be the
global root. If a chain remains, then the node (black circle in Fig-
ure 3f) closest to the center of mass is chosen. The animator also
has the option to manually specify the root if necessary, though we
have not found this necessary in our experiments.

4.2 Geometry: match ranking

Once all candidate sub-trees are identified and collected (Figure 3g,
left), we compare them to the simplified source tree (Figure 3b),
thus providing potential matches over all levels-of-detail on the
target. For each candidate match, the m branches of the source
(m = 2 in Fig. 3b) are compared to the n branches of the can-
didate sub-tree, and a matching score is calculated for each of the(
n
m

)
possible matches per sub-tree; a global ranking of these partial

scores is taken over all hierarchy levels (Figure 3g, right).
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Figure 3: Finding and scoring candidate partial matches between the source and target skeletons on various scales. We use the upper body
skeleton from Kinect (a) as the source, with its abstraction in (b). The LOD hierarchy of the target skeleton (c) is identified iteratively (d)–(f).
(g, left) Our algorithm collects sub-trees (1-1, 1-2, 2-1 and 2-2) at each iteration, and uses them to find the candidate mapping with the
simplified source (b) in a scale-invariant manner. Mappings are ranked using our proposed similarity metric (g, right).



We made the design choice to compute the resemblance in 2D
(screen space), similar to looking in a mirror. We furthermore con-
sider resemblance between source and target to be translation and
scale invariant, thus, sub-trees are translated such that their root
positions coincide, and uniformly scaled such that each of their
longest branches has length one. Scale invariance is of particular
importance in our modeling and animation pipeline: because the
animator can disassemble, scale, and re-attach parts of the original
shape, the target shape may contain similar or identical features at
different scales. However, the animator cannot modify the scale of
the input skeleton (e.g. the length of her arm) other than physically
changing the distance to the capture device or zooming the viewing
camera.

Our similarity metric is defined as the sum of cosine similarities
(i.e. sum of dot products) between the m pairs of branches on the
abstracted source and target sub-trees. For each of the

(
n
m

)
possi-

ble matches, its matching score is chosen as the highest similarity
among the m! possible pair (source and target) permutations. This
can easily be computed in real-time as m is generally very small
(for the Kinect input with two arms, m = 2). This metric preserves
rotational variance, and matches the orientation of the user input as
closely as possible. Figure 3g shows the result of comparing the ab-
stracted source tree against the identified target sub-trees. A total of
16 candidate matches are scored and ranked, and the top 4 matches
are visualized.

5 Motion representation and retargeting

In our system, source motions can originate from various cap-
ture devices or be reused from other models. Given a correspon-
dence between source and target skeleton abstractions, as well as
a user-provided source animation, our next task is to transfer the
animations between their corresponding polylines. As we cannot
make any assumptions about the sampling of the target polyline,
we propose a motion representation independent of its eventual tar-
get (Section 5.1). Every resulting animation becomes a retargeting
from our representation onto a polyline (or polylines) of the target
model (Section 5.2).

5.1 Representation
In AniMesh, motions are stored as rotations over time for each
skeletal bone. Due to the piece-wise rigidity of a bone skeleton,
orientations change only at skeletal nodes, and are therefore piece-
wise constant along the source polyline. In order to facilitate the re-
targeting of motions onto target polylines of any kind, we propose
to resample source motions at new node locations by distributing

q(s,t)

0 1

p(s,t)

target skeletonsource skeleton

turning
angle

rest

deformed

q(s,t)

source motion 
representation

sample target 
deformation

0 1

Figure 4: 2D analogy of motion representation and sampling. The
source and target polylines’ rest poses are shown in the top row.
At time t, the source polyline is deformed (bottom row, left). Its
animation (middle row, left) is represented as p(s,t) at time t, stored
as the sum of turning angles for each bone, and q(s,t), our proposed
interpolation of p(s,t). Using a unit arc-length parameterization,
the target polyline is deformed (bottom row, right) by sampling from
the source q(s,t) for each bone.

p
q

n

Figure 5: The animator can choose how far motion is retargeted
along a skeletal chain. Left: the target shape at rest pose. Middle:
the animator can terminate the skeletal chain at the sub-tree root
q; the entire sub-tree rotates rigidly. Right: alternatively, he can
extend the skeletal chain along the longest branch of the sub-tree to
a leaf node n.

rotations along the bones in a piece-wise linear manner. Although
it is possible to use higher-order interpolation, we find this repre-
sentation to be simple, efficient, and effective in all of our experi-
ments. Figure 4 (middle row) shows an example of this represen-
tation in 2D: turning angles p(s, t) are stored piece-wise constant
along the bones. By representing them using a piece-wise linear
function q(s, t), we can compute the turning angle anywhere along
the polyline. To bring this analogy into 3D, and in order to map the
animation to target polylines in a view-dependent fashion, we must
fix the coordinate system. For each animated source polyline, its
local (right-handed) basis is defined as follows: the z-axis points in
the direction of the first bone; the y-axis is perpendicular to both the
z-axis and the viewing direction, and points in the direction < 90◦

from the capture device’s up vector.

5.2 Retargeting

Using this representation we can retarget motions by sampling from
q(s, t) along the target polyline. Figure 4 illustrates this process
using a 2D analogy: given a unit arc-length parameterization of
source and target polylines, for each target bone, we use its param-
eter values at the two end points to sample the linear rotation func-
tion q(s, t) from the source motion and set its rotation (relative to its
parent) to be the difference between the sampled turning angles. In
3D we use the difference between sampled quaternions, and com-
pute samples of q(s, t) as needed by quaternion slerp [Shoemake
1985]. The target polyline after retargeting is shown in the bottom
right of Figure 4. Note how the total turning angle of the source
is preserved and the target polyline displays a similar shape to the
source after retargeting in the bottom row of Figure 4.

With this retargeting method, we now need to decide on the target
polyline onto which we will transfer the source motion. As men-
tioned in Section 3, the animator can manually specify the target
polyline. However, in case of retargeting onto the top match from
Section 4.2, the target polyline will not, in general, be uniquely
defined. In Figure 5, our algorithm picked the sub-tree rooted at
p in direction of q as one of the targets. Before transferring the
source motion, we unfold the sub-tree, and then decide on one of
two strategies for finding the target polyline: the animator can ei-
ther have the polyline stop at q (Figure 5, middle) and rotate the
entire sub-tree rigidly, or can choose to extend the matched poly-
line along the longest chain of the sub-tree, which terminates in a
leaf n (Figure 5, right); the other branches rotate rigidly.

When transferring the motions, we want to maintain a consistent up
direction between the source and the target polyline. Thus, similar
to the source polyline, we define the right-handed basis of the target
polyline view-dependently as the z-axis pointing in the direction
of the first bone, and the y-axis being perpendicular to the z-axis
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Figure 6: An example shape editing sequence with animations. Poses at time t = 1s are shown solid; poses at t = [0, 0.33, 0.66] are shown
semi-transparent (these intermediate poses are not shown in (e)-(h) for clarity of the modeling operations). (a) Shape with a single bone
and a 90◦ counter-clockwise rotation from the rest pose. (b) The animator adds two new nodes, and the modified skeleton snaps to a new
animation sequence; the total rotation along the polyline is preserved. (c) The animator makes a copy of the current shape and rotates it by
180◦. (d) After merging the two shapes, the original motions are preserved. (e) Cutting at time t results in two shapes (f), while retaining
bone orientations. (g) The cut-off part is merged to a different grafting node; the resulting shape (h) is consistent with the poses before the
merge, and the original motions are preserved (i). (The complete modeling session is shown in the accompanying video.)

and the viewing direction, with a positive inner product with the up
vector of the current camera. The user can also manually flip the
y-axis to change the transferred rotations.

6 Motion preserving shape editing

With skeleton matching and motion representation in place, we in-
troduce the key element which enables our non-destructive work-
flow – motion preserving shape editing by incorporating motion
retargeting into the editing process.

Most existing motion retargeting methods are a one-time process:
once the animator decides on a transfer, the motion data is ap-
plied to the target skeleton; any modeling operations to the target
model (e.g. deformation, cut, merge) at a later stage require that the
animation be re-mapped onto the modified shape. Using our mo-
tion representation, this re-mapping is no longer necessary: for a
skeletal polyline with animations attached, we can easily preserve
its motions during shape editing by maintaining and updating its

(a) (b) (c) 

b b1 
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Figure 7: Cutting operation at time t. (a) The shape has an
animation attached to it; its rest pose is shown semi-transparent.
The animator cuts bone b at time t 6= t0. (b) Without adjustmen-
t of the modeling transformations, retargeted motions introduce a
rotation discontinuity in the bone orientations of b1 and b2. (c) Ad-
justing the modeling transformation of the bones avoids this dis-
continuity.

mapping into the source animation. Because editing operations may
involve changes to the model as well as its animations, we must dis-
tinguish between modeling transformations (rotations introduced
through skeletal deformation/posing operations) and animation
transformations (rotations from retargeting source motion data).

Adding and removing nodes. If the animator inserts a new node
in the target polyline, we sample q(s, t) at the new parameter val-
ue and update the adjacent bone rotations using aforementioned
quaternion differences; node removal proceeds in similar fashion.
Resampling the interpolated source motion q(s, t) and computing
bone rotations in this way guarantees that the total rotation along the
polyline is invariant. Thus, removal of these nodes at a later date
restores the original motion. The animator can insert new nodes at
any time (Figure 6b).

Cutting. After a cutting operation, a polyline is separated into two
parts. Figure 7 illustrates this process: bone b is cut into b1 and
b2. A new node is added at the cutting position for both resulting
polylines, along with its arc-length parameter value s ∈ [0, 1]. For
the separated part, b2, the cut node is the new root.

Intuitively, the world-space orientations of both b1 and b2 should
remain unchanged after the cut. However, this is not the case for
an animated polyline. Due to the change in arc-length parameter
values, both b1 and b2 only receive a fraction of the retargeted rota-
tion from the original bone b. This results in a discontinuity in their
orientations (Figure 7b). We alleviate this by carefully adjusting
their modeling rotations: for each bone affected by the cut (b1, b2),
we compute the quaternion difference between its animation trans-
formation and that of the un-cut bone (b), and add in (i.e. right-
multiply) this difference onto its modeling transformation. This
non-trivial transformation redistrubution ensures consistent bone
orientations (Figure 7c).

Merging. We illustrate the process in Figure 8: the animator can
specify a grafting node p, grab one shape and merge it with another.
The root node of the shape being grafted onto r is retained for the
final merged shape. Similar to the cutting operation, we need to
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Figure 8: Merging operation at time t. (a) The to-be-grafted shape
with bone b has an animation attached to it; its rest pose is shown
semi-transparent. (b) Without adjusting the modeling rotation of b,
retargeted motion after the merge results in a different orientation
for the shape being attached. (c) Adjusting the modeling rotation
retains the original orientations.

adjust the modeling transformation for the bone b directly being
attached to p to avoid orientation discontinuities after the merge
(Figure 8b).

To do this, we calculate the world-space orientation of the bone
directly preceding p, accumulating both modeling and animation
transformations starting from its root r, and remove (i.e. invert and
left-multiply) this rotation from the modeling transformation of b.
This retains the orientation of b before the merge (Figure 8c).

7 Results
Using AniMesh, animators can quickly create expressive animation
sequences by iterating on both the model and its motion. A com-
plete animation session, including transferring and layering live
motion data from Kinect and LeapMotion, can be found in the ac-
companying video.

Since the representation of animation in AniMesh does not depend
on the source of motion, live motion captured data can be replaced
by canned (pre-recorded) animations. In Figure 9, the animator
manually selects a skeletal polyline on the squid tentacle, transfers
the canned source animation, and then makes copies of the shape as
well as the attached animations. By merging the tentacles she can
quickly generate composite animations.

With our non-destructive workflow, the basic operations of skele-
tal cut/merge and animation copy/paste provide powerful tools for
creating complex animated shapes. Figure 10 shows the modeling
and animation of a mantis. The user creates the torso and arms
for a mantis from scratch. She maps some simple motions from an
animation library onto the front arm, makes a copy of the arm along
with its animation, and attaches them to the shape; she performs a
similar operation for the front legs, then cuts off portion to reuse
as the back legs. By integrating modeling with animation, the user
need not worry about re-animating due to structural changes.

In order to gauge the accessibility of our system to novices, we
showed AniMesh to a small group of children between 9 and 11
years old. We observed that they typically found the manipulation
of timing with a timeline interface to be overly complex. Instead,
it was much more straightforward for them to use Kinect or Leap-
Motion for direct mapping and animation. Figure 11 shows two
children animating using the Kinect. They found that matching
using their own poses was very intuitive, and were excited when
their models started animating.

To evaluate how the simple operations of cut/merge, animation
copy/paste and time shifting in AniMesh can make modeling and
animation accessible to novices, we also invited 11 first-time

(a) (b) (c) (d) (e) 

Figure 9: Creating an animated squid with AniMesh. An existing motion (a) retargeted onto a single squid tentacle (b). The semi-transparent
parts indicate the motion sequence. To re-use the existing animation, the user makes multiple copies of the animated tentacle, rotates them,
and merges them (c). These merges result in a watertight squid raising its tentacles (e) from the rest pose (d).

transfer merge transfer

merge cut&copy merge

Figure 10: Creating an animated mantis in AniMesh using only cut/merge and animation copy/paste. The semi-transparent parts indicate
the motion sequence. A complete sequence of modeling, animation and iteration can be found in the supplementary video.



Figure 11: Children modeling and animating with AniMesh.

Figure 12: Shapes modeled and animated using AniMesh. The
semi-transparent parts indicate motion. These shapes took an
average of 20 minutes. Please refer to the accompanying video.

users, aged between 18 and 38, to participate in an informal user
study. We trained them for approximately 20 minutes, and then
allowed them to model and animate a shape without time lim-
its. The subjects modeled their shapes from scratch, and were
given access to a set of basic pre-recorded animations. None
of the subjects had significant 3D modeling or animation experi-
ence. Two subjects were professional 2D artists, and another two
subjects were indie game developers/designers. A selection of their
modeling/animation results are shown in Figure 12.

When asked about the quality of their experience, most subjects
reported that AniMesh was easy to use, and that the interleaved
modeling and animation process helped them quickly explore and
refine their designs. Some subjects attempted to create realistic
animations, such as walking or running motions, and found this
difficult to achieve. After our explanation of the design goal of
AniMesh as a prototyping tool, they changed their design focus and
had success with more cartoony character motions. One of the 2D
artists appreciated “the flexibility in building the mesh, skeleton
and the animation simultaneously,” and enjoyed “the freedom in
the transfer of motions from any existing shape parts.” She also saw
the potential of using more sophisticated human mo-cap data within
our non-linear workflow. The other artist was impressed with how
he could create an animated character in only 15 minutes (Figure 12
top-right). To quote the artist: “This is very useful for rapid proto-
typing. I can totally see it being used at a game jam to quickly cre-
ate animation contents, such as crowd animations”. One indie game
designer concurred and emphasized how important rapid prototyp-
ing with AniMesh could be for the indie community, which usually
has only limited time and resources, and where it is economically
impractical to rent a motion capture system during development.

(b)
0 1

nA nB nD
(a) nC

0 1

1.00.30.3 0.6

nA nB nD

(c)
1.00.3

0.3 0.6

source 
rotation

Figure 13: (a) Merging two bones at nB and nC , each of which
maps into a different source animation (b, orange and cyan). After
the merge (c), the grafting node nB has parameter 0.6 for one
source motion and parameter 0.3 for another. Removing node nB

will invalidate the existing animation for the resulting, single bone.

8 Discussion and future work
When comparing the geometry of source and target skeletons we
measure their similarity based on their projections in screen space
rather than world space. Allowing users to match against targets in
world space is troublesome due to human difficulty understanding
the orientation of 3D objects on a 2D display. Matching in screen
space, on the other hand, is perceptually unambiguous. The screen
space similarity metric, however, becomes degenerate when a bone
is perpendicular to the screen. Fortunately, this case is uncommon
in practice, and easily solved by rotating the model to a better per-
spective. In light of this, it would be interesting to investigate per-
ceptual viewpoint preference [Secord et al. 2011] to automatically
suggest good camera views for the matching (e.g. by maximizing
the sum of projected bone lengths).

Despite the generality of our matching technique, users still find it
easiest to match their skeleton to humanoid subsections of a given
target and animate a complicated rig in multiple passes. It’s like-
ly this is an inherent psychological tendency, however it would be
valuable to explore if our matching algorithm could be improved to
encourage artists to animate characters in fewer sequential passes.

The choice to model animation as cumulative bone rotations was
made based on our intuition that it naturally represented the in-
tention of the user. Later, we confirmed through experiments that
users were in fact very comfortable with this representation. On
the other hand, there is still room to explore alternative method-
s of retargeting motion, such as transferring end effector positions
between source and target, then using inverse kinematics to gener-
ate intermediate skeletal motion. This approach in particular solves
foot-skate, and allows us to then explore other features such as root
node translation. However, as currently designed, the animations
created with AniMesh can be fine-tuned at a later stage by enforcing
constraints for interactions with the environment [Gleicher 1998;
Kovar et al. 2002].

After merging two skeletons, an ambiguity may arise: the grafting
node maintains parameter values associated with different source
animations (Figure 13). In our current implementation, deleting the
grafting node nB will leave both chains’ motions undefined; we
simply invalidate the motions attached to both chains in these cases.
A suitable reparameterization may be able to address the issue.

In the future, we would also like to investigate using symmetry to
apply animations to similar skeletal parts at the same time. For ex-
ample, animating the multiple tentacles of a squid simultaneously.
If rotational symmetry is detected, the animator would only need to
specify the mapping to one tentacle, and the same motion could be
automatically applied to the rest.
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